Building Custom IDS Sensor

Suricata & Zeek

Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction and Goal of this Document</td>
<td>2</td>
</tr>
<tr>
<td>Building Elasticsearch Server with TLS Communications</td>
<td>2</td>
</tr>
<tr>
<td>Building CentOS7 Sensor</td>
<td>2</td>
</tr>
<tr>
<td>Configure NIC card & Hostname</td>
<td>2</td>
</tr>
<tr>
<td>Update Sensor and add the following packages</td>
<td>2</td>
</tr>
<tr>
<td>Add Zeek Directory Path to Profile</td>
<td>3</td>
</tr>
<tr>
<td>Create Zeek & Surcata Log Directories</td>
<td>3</td>
</tr>
<tr>
<td>Extract tarball to /</td>
<td>4</td>
</tr>
<tr>
<td>Install and Configure Zeek</td>
<td>5</td>
</tr>
<tr>
<td>Configure Zeek log directories</td>
<td>5</td>
</tr>
<tr>
<td>Create the Following Zeek Directories</td>
<td>6</td>
</tr>
<tr>
<td>Configuring Zeek Nodes & Networks</td>
<td>6</td>
</tr>
<tr>
<td>Starting Zeek</td>
<td>7</td>
</tr>
<tr>
<td>Install and Configure Suricata</td>
<td>9</td>
</tr>
<tr>
<td>Configuring Suricata</td>
<td>9</td>
</tr>
<tr>
<td>Setup root Cronjob</td>
<td>9</td>
</tr>
<tr>
<td>Edit and Update suricata.yml</td>
<td>12</td>
</tr>
<tr>
<td>Adding Suricata Service Startup Script</td>
<td>12</td>
</tr>
<tr>
<td>Logging Data to Elasticsearch</td>
<td>14</td>
</tr>
<tr>
<td>Install Filebeat</td>
<td>14</td>
</tr>
<tr>
<td>Install Metricbeat to Monitor the Sensor</td>
<td>19</td>
</tr>
<tr>
<td>Install and Configure Packetbeat</td>
<td>20</td>
</tr>
<tr>
<td>Want to Collect Netflow Data?</td>
<td>24</td>
</tr>
<tr>
<td>Add to /etc/rc.local</td>
<td>24</td>
</tr>
<tr>
<td>References</td>
<td>25</td>
</tr>
<tr>
<td>Annex: Tarball Files and Directories</td>
<td>26</td>
</tr>
</tbody>
</table>
Introduction and Goal of this Document

The primary goal of this document is to provide a framework to build your own sensor(s) using CentOS 7 with Suricata and Zeek. It also has information to capture netflow data using softflowd.

The last step is to use this document to send all the logs to Elasticsearch using filebeat. It also has information to use packetbeat as a replacement or complement to netflow.

Building Elasticsearch Server with TLS Communications

This document is how to add encryption between the sensor(s) and Elasticsearch for secure communication.

Building CentOS7 Sensor

Download and install CentOS7

Sensor needs a minimum of 2 interfaces (management and capture)

Recommend 3 drives:

- Main drive with /, swap, /home, /var/log
- Second drive with Suricata logs
- Third drive with Zeek logs

Configure NIC card & Hostname

Configure the management NIC card with a static IP.

$ sudo nmtui

Update Sensor and add the following packages:

$ sudo yum -y update

$ sudo yum -y install open-vm-tools ntp bind-utils net-tools wget unzip tcpdump
$ sudo yum -y install epel-release htop
$ sudo timedatectl list-timezones
$ sudo timedatectl set-timezone UTC
$ sudo systemctl stop ntpd
$ sudo ntpdate 0.centos.pool.ntp.org
$ sudo systemctl start ntpd
$ sudo su root -

Add Zeek Directory Path to Profile

$ sudo su -
vi /root/.bashrc
export PATH=/opt/zeek/bin:$PATH

Reload the root profile to include Zeek
. /root/.bashrc

Create Zeek & Surcata Log Directories

cfdisk /dev/sdb
mkfs.xfs /dev/sdb1
mkdir -p /nsm/suricata

cfdisk /dev/sdc
mkfs.xfs /dev/sdc1
mkdir -p /nsm/zeek

Add these two partitions to /etc/fstab:
vi /etc/fstab
Suricata logs location: /nsm/suricata
Zeek logs location: /nsm/zeek

Extract tarball to /

I use VMware sensors for my sensors with a prebuilt VM. This tarball has all the scripts and files included in all the steps listed below. Any files or script that need to be create, update or modified to configure the sensor, they are part of this package to speed up getting the sensor built. The tarball can be downloaded at this location.

There are two tarball, the first installation.tgz is to setup all the scripts listed below to install the software and the second tarball is to preconfigure some of the sensor configuration files.

Extract this tarball as follow: tar zxvf installation.tgz -C /

Installation script: https://handlers.sans.edu/gbruneau/scripts/installation.tgz

Extract this tarball after installing all the binaries: tar zxvf sensor.tgz -C /

Sensor script: https://handlers.sans.edu/gbruneau/scripts/sensor.tgz

The list of directories and files are listed in the Annex.
Install and Configure Zeek
The Zeek pre-build package is available for download at this location which will add the repo to the sensor.

https://software.opensuse.org//download.html?project=security%3Azeek&package=zeek

This blog is about collecting Zeek logs with Elasticsearch:

cd /etc/yum.repos.d/
wget https://download.opensuse.org/repositories/security:zeek/CentOS_7/security:zeek.repo
yum -y install zeek

→ Zeek is installed in the /opt/zeek directory

Configure Zeek log directories

vi /opt/zeek/etc/zeekctl.cfg

Location of the log directory where log files will be archived each rotation
interval.
LogDir = /nsm/zeek/logs

Location of the spool directory where files and data that are currently being
written are stored.
SpoolDir = /nsm/zeek/spool

Location of the directory in which the databases for Broker datastore backed
Zeek tables are stored.
BrokerDBDir = /nsm/zeek/spool/brokerstore
Create the Following Zeek Directories

mkdir -p /nsm/zeek/logs
mkdir -p /nsm/zeek/spool
mkdir -p /nsm/zeek/spool/brokerstore
chown -R root:zeek /nsm/zeek

Configuring Zeek Nodes & Networks

Find which network card (ifconfig) is the packet capture and configure Zeek node:

vi /opt/zeek/etc/node.cfg

[zeek]
type=standalone
host=localhost
interface=ens160

Configure the protected network(s):

vi /opt/zeek/etc/networks.cfg

Enter the correct network(s) here.

Edit and configure local.zeek to save the data in JSON format. Add the following at the end of the file:

vi /opt/zeek/share/zeek/site/local.zeek

Output to JSON
@load policy/tuning/json-logs.zeek
Add the following Zeek Service configuration file to start Zeek when the sensor boot:

```bash
# vi /etc/systemd/system/zeek.service

[Unit]
Description=Zeek Network Intrusion Detection System (NIDS)
After=network.target

[Service]
Type=forking
User=root
Group=zeek
Environment=HOME=/nsm/zeek/spool
ExecStart=/opt/zeek/bin/zeekctl deploy
ExecStop=/opt/zeek/bin/zeekctl stop

[Install]
WantedBy=multi-user.target
```

Starting Zeek

```bash
# zeekctl install
# systemctl daemon-reload
# systemctl enable zeek
# systemctl start zeek
# systemctl status zeek
```
Log location: /nsm/zeek/spool/zeek
Install and Configure Suricata

Suricata pre-build packages 6.x packages information is available at the following URL:

The following example is used to install Suricata 6.0 on CentOS. If you wish to install 5.0 instead, change the version in @oisf/suricata-6.0.

yum -y install epel-release yum-plugin-copr
yum -y copr enable @oisf/suricata-6.0
yum -y install suricata

Configuring Suricata

The following steps assumes that all the events from Suricata will be stored into Elasticsearch, the log files can be removed at regular interval to keep that directory clean.

chown -R suricata:suricata /nsm/suricata

Setup root Cronjob

Edit the root contab and add the following configuration:

cronjob -e

* 0-23 * * * /usr/sbin/logrotate -f /etc/logrotate.conf > /dev/null 2>&1

Remove old gzip files every hours
5 0-23 * * * /root/scripts/remove_suricata.sh > /dev/null 2>&1

Suricata rule update - /var/lib/suricata/rules
0 12 * * * /usr/bin/suricata-update update --reload-command "/usr/bin/systemctl kill -s USR2 suricata" > /var/log/suricata-update.log 2>&1

Configuring Suricata to enable Threshold and the option to disable Signatures and Rulesets:

cd /etc/suricata

wget https://raw.githubusercontent.com/OISF/suricata-update/master/suricata/update/configs/disable.conf

wget https://raw.githubusercontent.com/OISF/suricata-update/master/suricata/update/configs/threshold.in

Edit disable.conf and disable these group at the end of the file if you are not using them. This will prevent errors when starting Suricata.

vi /etc/suricata/disable.conf

group: modbus
group: dnp3

Update Suricata Logrotate file with the following additions:

vi /etc/logrotate.d/suricata

Sample /etc/logrotate.d/suricata configuration file.
/nsm/suricata/*.log /nsm/suricata/*.json
{
 daily
 rotate 3
 size 500M
 missingok
 compress
 delaycompress
 copytruncate
 create 0644 suricata suricata
sharedscripts
postrotate
 systemctl stop suricata.service
 systemctl stop filebeat.service
 systemctl start suricata.service
 systemctl start filebeat.service
endscript
}

Create this script to remove old Suricata files regularly:

mkdir /root/scripts
vi /root/scripts/remove_suricata.sh

#!/bin/sh
#
Guy Bruneau, guybruneau@outlook.com
Date: 17 March 2021
Version: 1.0

Remove old gzip file every hours
/usr/bin/rm -f /nsm/suricata/eve.json-*gz
/usr/bin/rm -f /nsm/suricata/fast.log-*gz
/usr/bin/rm -f /nsm/suricata/stats.log-*gz
/usr/bin/rm -f /nsm/suricata/suricata.log-*gz

chmod 755 /root/scripts/remove_suricata.sh
Edit and Update suricata.yml

Update suricata.yml to match the correct network interface, monitored network(s) ranges and log directory.

vi /etc/suricata/suricata.yaml

HOME_NET: "[192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]"

af-packet:
 # - interface: eth0
 - interface: ens160

The default logging directory. Any log or output file will be placed here if it's not specified with a full path name. This can be overridden with the -l command line parameter.
default-log-dir: /nsm/suricata/

###
Configure Suricata to load Suricata-Update managed rules.
###

default-rule-path: /var/lib/suricata/rules

rule-files:
 - suricata.rules

Adding Suricata Service Startup Script

Add the following Suricata Service configuration file to start Suricata when the sensor boot:
vi /etc/systemd/system/suricata.service

[Unit]
Description=Suricata Intrusion Detection Service
After=syslog.target network.target

[Service]
EnvironmentFile=-/etc/sysconfig/suricata
ExecStart=/usr/sbin/suricata -c /etc/suricata/suricata.yaml --af-packet
ExecReload=/bin/kill -HUP $MAINPID
User=suricata
Group=suricata
CapabilityBoundingSet=CAP_NET_ADMIN CAP_NET_RAW CAP_IPC_LOCK
AmbientCapabilities=CAP_NET_ADMIN CAP_NET_RAW CAP_IPC_LOCK

[Install]
WantedBy=multi-user.target

systemctl daemon-reload
systemctl enable suricata
systemctl start suricata
systemctl status suricata
Logging Data to Elasticsearch
This section is to configure the sensor to send the logs collected by Suricata and Zeek (or any other applications and services) to Elasticsearch.

Install Filebeat
Install the GPG key and add the repo information.

```
# rpm --import https://artifacts.elastic.co/GPG-KEY-elasticsearch
# vi /etc/yum.repos.d/elasticsearch.repo

[elasticsearch-7.x]
name=Elasticsearch repository for 7.x packages
baseurl=https://artifacts.elastic.co/packages/7.x/yum
gpgcheck=1
gpgkey=https://artifacts.elastic.co/GPG-KEY-elasticsearch
enabled=1
autorefresh=1
type=rpm-md

# yum -y install filebeat
```

Configure Filebeat

```
# cd /etc/filebeat/modules.d
# filebeat modules -help
# filebeat modules list | head
# filebeat modules enable zeek suricata
# filebeat modules enable netflow    → enable only if planning to install softflow
# filebeat modules list | head
```
Add the following path:

```yaml
var.paths: ["/nsm/suricata/eve.json"]
```

Set custom var.paths: for all the log files. I set *dnp3* and *modbus* to false. If you are using them, keep them as true.

```yaml
var.paths: ["/nsm/zeek/spool/zeek/*.log"]
```
If you are going to use `softflowd` verify the port and the network.

```bash
# vi /etc/filebeat/modules.d/netflow.yml
```

Setup filebeat.yml to Elasticsearch

It is time configure filebeat to send the logs to Elasticsearch and configure the network location of Elasticsearch, some processors and enable x-pack monitoring.

```bash
# vi /etc/filebeat/filebeat.yml
```

→ *Goto Elasticsearch Output and Configure where Elasticsearch is located and if SSL encryption is used between the sensor and Elasticsearch*

```yaml
output.elasticsearch:
  # Array of hosts to connect to.
  hosts: ["localhost:9200"]
  # loadbalance: true
  # pipeline: geoip-info

  # Protocol - either `http` (default) or `https`.
```
#protocol: "https"

Authentication credentials - either API key or username/password.

#api_key: "id:api_key"
#username: "elastic"
#password: "changeme"

queue.mem:
 events: 4096
 flush.min_events: 512
 flush.timeout: 5s

→ Goto Processors and add the JSON decode processor for Zeek and Suricata:

=================================
Processors =================================

processors:
 - add_host_metadata: ~
 - copy_fields:
 fields:
 - from: source.ip
 to: source.address
 fail_on_error: false
 ignore_missing: true
 - copy_fields:
 fields:
 - from: destination.ip
 to: destination.address
 fail_on_error: false
 ignore_missing: true
processors:
 - add_host_metadata: ~
 - add_fields:
 when.network.source.address: private
 fields:
 source.geo.location:
 lat: 45.3316
 lon: -75.6718
 source.geo.continent_name: North America
 source.geo.city_name: Ottawa
 source.geo.country_iso_code: CA
 source.geo.region_iso_code: CA-ON
 source.geo.region_name: Ontario
 target: '
 - add_fields:
 when.network.destination.address: private
 fields:
 source.geo.location:
 lat: 45.3316
 lon: -75.6718
 source.geo.continent_name: North America
 source.geo.city_name: Ottawa
 source.geo.country_iso_code: CA
 source.geo.region_iso_code: CA-ON
 source.geo.region_name: Ontario
 target: '

→ If you find filebeat is logging to much stuff, you can change the logging level to /var/log/messages

================================== Logging ===================================
Sets log level. The default log level is info.
Available log levels are: error, warning, info, debug
logging.level: debug
logging.level: error

============================= X-Pack Monitoring =============================

Set to true to enable the monitoring reporter.
monitoring.enabled: true

Testing Configuration and Enabling Filebeat

filebeat test config
filebeat test output
filebeat setup --pipelines
filebeat setup --index-management
systemctl enable filebeat
systemctl start filebeat
systemctl status filebeat

Install Metricbeat to Monitor the Sensor
Metricbeat provides statistics about the sensor.

yum -y install metricbeat
vi /etc/metricbeat/metricbeat.yml

→ Goto Elasticsearch Output and Configure where Elasticsearch is located and if SSL encryption is used between the sensor and Elasticsearch

----------------- Elasticsearch Output -----------------
output.elasticsearch:

Array of hosts to connect to.
hosts: ["localhost:9200"]

Protocol - either `http` (default) or `https`.
#protocol: "https"

Authentication credentials - either API key or username/password.
#api_key: "id:api_key"
#username: "elastic"
#password: "changeme"

cd /etc/metricbeat/modules.d
ls -l system.yml

system.yml is enabled by default

metricbeat modules list | head
metricbeat test config
metricbeat test output
systemctl enable metricbeat
systemctl start metricbeat
systemctl status metricbeat

Install and Configure Packetbeat
https://www.elastic.co/beats/packetbeat

Packetbeat is a lightweight packet analyzer that can be used to inspect certain type of traffic and provide flow data.
yum -y install packetbeat
vi /etc/packetbeat/packetbeat.yml

#================================ Network device ================================

Select the network interface to sniff the data. On Linux, you can use the
"any" keyword to sniff on all connected interfaces.
packetbeat.interfaces.device: ens160
packetbeat.interfaces.snaplen: 1514
packetbeat.interfaces.type: af_packet
packetbeat.interfaces.buffer_size_mb: 100

→ Review this section and modify as required. Suggested update for DNS, HTTP and TLS

#================================ Transaction protocols =============================

- type: dns
 # Configure the ports where to listen for DNS traffic. You can disable
 # the DNS protocol by commenting out the list of ports.
 ports: [53, 5353]
 include_authorities: true
 include_additionals: true
 send_request: true
 send_response: true

- type: http
 # Configure the ports where to listen for HTTP traffic. You can disable
 # the HTTP protocol by commenting out the list of ports.
 ports: [80, 81, 5000, 7001, 7780, 8000, 8002, 8008, 8080, 8088]
 decode_body: true
 send_request: true
send_response: true

- type: tls

 # Configure the ports where to listen for TLS traffic. You can disable
 # the TLS protocol by commenting out the list of ports.

 send_certificates: true

 include_raw_certificates: false

 include_detailed_fields: true

 fingerprints: [md5, sha1, sha256]

 ports:
 - 443 # HTTPS
 - 993 # IMAPS
 - 995 # POP3S
 - 4443
 - 5223 # XMPP over SSL
 - 8443
 - 8883 # Secure MQTT
 - 9243 # Elasticsearch
 - 10443

→ Goto Elasticsearch Output and Configure where Elasticsearch is located and if SSL encryption is used between the sensor and Elasticsearch

--------------------------------- Elasticsearch Output ---------------------------------

output.elasticsearch:

 # Array of hosts to connect to.

 hosts: ["localhost:9200"]

 # loadbalance: true
Note: make sure geoip-info has been loaded into Stack Management → Ingest Node Pipelines

pipeline: geoip-info

Protocol - either `http` (default) or `https`.
#protocol: "https"

Authentication credentials - either API key or username/password.
#api_key: "id:api_key"
#username: "elastic"
#password: "changeme"

#================================ Processors ============================

processors:
- add_host_metadata: ~
- add_fields:
 when.network.source.ip: private
 fields:
 source.geo.location:
 lat: 45.3316
 lon: -75.6718
 source.geo.continent_name: North America
 source.geo.city_name: Ottawa
 source.geo.country_iso_code: CA
 source.geo.region_iso_code: CA-ON
 source.geo.region_name: Ontario
 target: "
- add_fields:
 when.network.destination.ip: private
fields:

- destination.geo.location:
 - lat: 45.3316
 - lon: -75.6718
- destination.geo.continent_name: North America
- destination.geo.city_name: Ottawa
- destination.geo.country_iso_code: CA
- destination.geo.region_iso_code: CA-ON
- destination.geo.region_name: Ontario

Set to true to enable the monitoring reporter.
monitoring.enabled: true

Want to Collect Netflow Data?

Get the tarball from: https://github.com/irino/softflowd

Install softflowd /usr/local/sbin

Add to /etc/rc.local

Netflow data
softflowd -i ens160 -v 9 -P udp -n 127.0.0.1:2055

chmod 755 /etc/rc.local
References
Annex: Tarball Files and Directories

./etc:
filebeat
logrotate.d
packetbeat
rc.local
suricata
systemd
yum.repos.d

./etc/filebeat:
filebeat.yml
modules.d

./etc/filebeat/modules.d:
netflow.yml
suricata.yml
zeek.yml

./etc/logrotate.d:
suricata

./etc/packetbeat:
packetbeat.yml

./etc/suricata:
disable.conf
threshold.in
suricata.yaml

./etc/systemd:
system

./etc/systemd/system:
suricata.service
zeek.service

./etc/yum.repos.d:
_copr_oisf-suricata-6.0.repo
elasticsearch.repo
epel.repo
epel-testing.repo
security:zeek.repo

./nsm:
suricata
zeek

./nsm/suricata:

./nsm/zeek:
logs
spool

./nsm/zeek/logs:

./nsm/zeek/spool:
brokerstore

./nsm/zeek/spool/brokerstore:

./opt:
zeek
softflowd

./var:
spool

./var/spool:
cron

./var/spool/cron:
root